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Abstract

Transient elastodynamic analysis of an antiplane crack in anisotropic solids is presented. A time-domain traction
boundary integral equation (BIE) method is applied for this purpose. The traction BIE is hypersingular and has the

crack-opening-displacement as its fundamental unknown quantity. Unlike the usual time-domain BIE method the
present formulation applies a convolution quadrature developed by Lubich (Lubich, C., 1988a,b. Convolution
quadrature and discretized operational calculus. Numer. Math. 52, 129±145 (Part I), 413±425 (Part II)) which

requires only the Laplace-domain instead of the time-domain Green's functions. The spatial variation of the crack-
opening-displacement is approximated by an in®nite series of Chebyshev polynomials which take the local behavior
of the crack-opening-displacement at crack-tips into account. By using a Galerkin method, the time-domain BIE is

converted into a system of linear algebraic equations which can be solved step by step. Special attention is devoted
to the computation of dynamic stress intensity factors of an antiplane crack in generally anisotropic solids.
Numerical results for isotropic solids are presented and compared with the well-known analytical results of Thau
and Lu (Thau, S.A., Lu, T.H., 1970. Di�raction of transient horizontal shear waves by a ®nite crack and a ®nite

rigid ribbon. Int. J. Enggn. Sci. 8, 857±874), to check the accuracy and e�ciency of the present time-domain BIE
method. The e�ect of the material anisotropy on the dynamic stress intensity factors is analyzed via several
numerical examples. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Anisotropic solids; Elastodynamics; Transient dynamic crack analysis; Elastic wave scattering; Boundary integral

equations

1. Introduction

Elastodynamic crack analysis of anisotropic solids is of particular interest to ultrasonic quantitative
non-destructive evaluation and to linear elastic fracture mechanics. Since the location, orientation, shape
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and size of pre-existing interior or surface cracks are directly related to scattered elastic waves, useful
information can be extracted from ultrasonic nondestructive measurements for detecting and
quantitatively characterizing crack-like defects in anisotropic materials. Once crack-like defects have
been detected and characterized, the concepts of linear elastic fracture mechanics can be applied to
assess the initiation and growth of pre-existing cracks under static or dynamic loading conditions.
Material anisotropy may occur in many solids such as composites, piezoelectric ceramics, ice and
diamond. Crack-like defects in such solids may be induced due to manufacturing or inservice conditions.

Several investigations on elastodynamic crack analysis of anisotropic solids can be found in literature.
Elastodynamic stress intensity factors due to incident plane time-harmonic elastic waves have been
presented by Ohyoshi (1973a), Zhang and Gross (1993) for antiplane cracks, and by Ohyoshi (1973b)
and Dhawan (1982, 1983) for inplane cracks in transversely isotropic solids. Di�raction of plane time-
harmonic elastic waves has been investigated by Lobanov and Novichkov (1981) for an antiplane crack
in an orthotropic half-space, and by Norris and Achenbach (1984) for a semi-in®nite inplane crack in an
in®nite transversely isotropic material. Dynamic response analysis has been performed by Karim and
Kundu (1988) for layered anisotropic half-spaces with antiplane interface cracks and by Karim and
Kundu (1991) for an orthotropic half-space with a subsurface in-plane crack. Scattering and di�raction
of SH-waves by multiple planar cracks in an anisotropic half-space has been analyzed by Ang et al.
(1993) via a hypersingular integral equation formulation. Transient elastodynamic stress intensity factors
due to impact loading have been given by Kassir and Bandyopadhyay (1983), Shindo et al. (1986), and
Ang (1987) for an inplane crack in an in®nite transversely isotropic solid, by Shindo and Nozaki (1987)
for a transversely isotropic cylinder with a penny-shaped crack, by Ang (1988) for an inplane crack in a
transversely isotropic layered material, and by Kuo (1984a, 1984b) for an interface crack between
orthotropic and fully anisotropic half-spaces. The interaction of time-harmonic elastic waves with a
penny-shaped crack in transversely isotropic materials has been analyzed by Tsai (1973, 1982, 1988,
1989) who calculated the elastodynamic stress intensity factors, by Kundu (1990), and by Kundu and
BostroÈ m (1991, 1992) who computed the crack-opening-displacements and the scattered far-®eld. A
steadily moving inplane crack in an orthotropic material has been studied by Kassir and Tse (1983) and
Piva (1986, 1987), while closed form solutions for an antiplane crack moving in an orthotropic layer of
®nite thickness have been given by Danyluk and Singh (1984). A periodic array of collinear antiplane
cracks in transversely isotropic solids has been analyzed by Zhang (1992). Recent investigations on the
subject include the wave scattering analysis of Liu and Achenbach (1995) for anisotropic laminated
plates with cracks via the strip element method, the time-harmonic analysis by Sarkar et al. (1995) for
three coplanar cracks, Itou (1996) for two collinear cracks, and Itou and Haliding (1997) for two
parallel cracks in an orthotropic medium, the transient analysis by Rizza and Nair (1998) for a penny-
shaped crack in a transversely isotropic material under non-axisymmetric impact loads, the dynamic
response treatment of Rubio-Gonzalez and Mason (1999) for ®nite cracks in orthotropic materials due
to concentrated impact shear loads, the wave scattering analysis by Shen and Kuang (1998) for an
interface crack in laminated anisotropic media, the transient response analysis of Pramanik et al. (1998)
for an interface crack between two anisotropic solids under a pair of antiplane point impact loading on
the crack-faces, the intersonic shear crack propagation investigation by Piva and Hasan (1996) for
orthotropic materials, the stress intensity factors computations by Das and Patra (1998) for moving
interfacial crack between bonded dissimilar ®xed orthotropic layers, and the crack propagation
modelling in anisotropic media by Padovan (1998). Boundary element method has been presented by
DomõÂ nguez and SaÂ ez (1998), SaÂ ez and DomõÂ nguez (1999) for time-harmonic wave scattering analysis in
transversely isotropic solids with penny-shaped cracks, and by Albuquerque et al. (1999) for two-
dimensional cracked anisotropic media. Most of the previous studies on elastodynamic crack analysis of
anisotropic solids have been limited to transversely isotropic or orthotropic solids. This case arises for
instance in unidirectionally ®ber-reinforced composites and cross-plied laminates when the crack plane
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coincides with one of the principal axes of material symmetry. If the crack plane, however, is aligned
with respect to the axes of material symmetry, the assumption of a transverse isotropy is no longer valid
and a general anisotropy arises. Ultrasonic crack detection in solids of general anisotropy has been
investigated by Mattsson (1996), Niklasson (1997), Mattsson and Niklasson (1997), and Mattsson et al.
(1997).

In this paper, transient elastodynamic crack analysis is performed for an in®nite solid of general
anisotropy and for a state of antiplane strain. A time-domain traction boundary integral equation (BIE)
method is applied for this purpose. In Section 2, the initial-boundary value problem of transient wave
scattering by a ®nite crack of general shape is formulated as a traction BIE in time-domain. This
traction BIE is hypersingular and has the crack-opening-displacement as its fundamental unknown
quantity. A time-stepping scheme for solving the hypersingular time-domain BIE is presented in Section
3. To simplify the analysis, a straight crack is assumed. Unlike the usual time-stepping scheme
frequently applied in solving time-domain BIEs, the present method uses a convolution quadrature
developed by Lubich (1988a, 1988b). The convolution quadrature of Lubich (1988a, 1988b) bases on a
multistep method and it uses the Laplace-domain instead of the time-domain Green's functions. The
spatial variation of the crack-opening displacement (COD) is approximated by a series of Chebyshev
polynomials which take the proper local behavior of the crack-opening-displacement at crack-tips into
account. By adopting a Galerkin method, a system of linear algebraic equations for the expansion
coe�cients is obtained, which can be solved step by step. The problem in the Laplace-domain is
discussed in Section 4, to derive the Green's functions and to evaluate the system matrix in the Laplace-
domain, which are needed in the present time-stepping scheme. Once the crack-opening-displacement
has been determined via the time-stepping scheme, the elastodynamic stress intensity factors, the
displacement and the stress ®elds at an arbitrary point can be computed in a simple manner. The
required fundamental equations for doing this are given in Sections 5 and 6. Numerical results and
discussions are presented in Section 7. To test the accuracy and e�ciency of the present time-domain
BIE method, numerical results for isotropic solids are given and compared with the well-known
analytical results of Thau and Lu (1970). It shows that the present method is highly accurate and stable.
Several numerical examples for elastic solids of general anisotropy are shown to analyze the e�ects of
the material anisotropy on the time-dependent elastodynamic stress intensity factors.

2. Problem statement and time-domain BIE

We consider an in®nite, homogeneous, anisotropic, and linearly elastic solid containing a ®nite crack
of an arbitrary shape as shown in Fig. 1. The solid is subjected to an incident transient plane SH-wave,
and the deformation of the solid is thus in a state of antiplane strain. The non-zero quantities are the
displacement component u3 in the x3-direction, and the shear stress components s3a �a � 1, 2�: The
cracked anisotropic solid is described by the equation of motion

s3a, a � r �u3, �1�
the Hooke's law�

s31
s32

�
�
�
C55 C45

C45 C44

� �
u3, 1
u3, 2

�
, �2�

the initial conditions

u3�x, t� � _u3�x, t� � 0, for t � 0, �3�
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and the traction-free boundary condition on the crack-faces

f3�x, t� � s3a�x, t�na�x� � 0, x 2 Gc: �4�
Here, r is the mass density, C44, C45 and C55 are the elastic constants, Gc � G�c � Gÿc are the crack-
faces, and na is the unit normal vector. Also, a comma after a quantity represents the partial derivative
with respect to spatial variables, and superscript dots stand for the temporal derivatives of the quantity.
The conventional summation rule over double indices is implied.

By substituting Eq. (2) into Eq. (1) the equation of motion in terms of the displacement component u3
can be written as

C55u3, 11 � 2C45u3, 12 � C44u3, 22 � r �u3: �5�
The interaction of an incident wave with the crack induces scattered waves. The total wave ®eld can be
written as a sum of the incident wave ®eld and the scattered wave ®eld

u3 � uin
3 � usc

3 , s3a � sin
3a � ssc

3a, �6�
where uin

3 and sin
3a represent the displacement and the stress components of the incident wave ®eld in the

absence of the crack, while usc
3 and ssc

3a denote the corresponding displacement and stress components of
the scattered wave ®eld due to the interaction of the incident wave with the crack. The incident wave
®eld is assumed to be known, while the scattered wave ®eld is unknown and has to be determined. The
scattered wave ®eld should satisfy the equation of motion (1) or (5), Hooke's law (2), the initial
conditions (3), and the boundary condition (4) which can be rewritten as

f sc
3 �x, t� � ÿf in

3 �x, t�, x 2 Gc: �7�
The scattered displacement usc

3 �x, t� can be represented by a boundary integral of the form

usc
3 �x, t� �

�
G�c

sG
3a3�x, y; t, t� � Du3�y, t�na�y� ds, x=2G�c , �8�

where sG
3a3�x, y; t, t� is the stress Green's function, Du3�y, t� is the crack-opening-displacement

Du3�y, t� � u3
ÿ
y 2 G�c , t

�ÿ u3
ÿ
y 2 Gÿc , t

�
, �9�

Fig. 1. A crack of arbitrary shape.
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and an asterisk � denotes Riemann convolution de®ned by

g�x, t� � h�x, t� �
�t
0

g�x, tÿ t�h�x, t� dt: �10�

Substitution of Eq. (8) into Hooke's law (2) results in an integral representation formula for the traction
component f sc

3 �x, t�

f sc
3 �x, t� � na�x�

�
G�c

T G
3a3�x, y; t, t� � Du3�y, t� ds, x=2G�c , �11�

where

�
T G

313

T G
323

�
�
�
C55 C45

C45 C44

� 8>>>><>>>>:
@sG

3b3

@x1
nb

@sG
3b3

@x2
nb

9>>>>=>>>>;: �12�

By taking the limit process x4G�c and considering the traction-free boundary condition (4) or (7), a
time-domain traction BIE is obtained as

na�x�
�
G�c

T G
3a3�x, y; t, t� � Du3�y, t� ds � ÿf in

3 �x, t�, x 2 G�c , �13�

in which the crack-opening-displacement Du3 is the fundamental unknown quantity of the traction BIE.
Note here that the time-domain traction BIE (13) is hypersingular since T G

3a3�x, y; t,t� behaves as (see
Wang and Achenbach, 1994; Wang et al., 1996)

T G
3a3�x, y; t, t�A 1

jxÿ yj2 , for x4y: �14�

The hypersingular integral in Eq. (13) has to be understood in the sense of Hadamard ®nite-part
integral. In general, the hypersingular BIE (13) can be solved by three di�erent methods, namely the
Galerkin method, the regularization method and the direct method. In this paper, a Galerkin method
will be used. Note here that an explicit expression for the time-domain Green's function T G

3a3�x, y; t, t�
itself is not required in the present method as will be seen in the following sections. In lieu of this, its
Laplace transform T̂

G

3a3�x, y; p� plays a more important role and should have a simple mathematical
structure.

3. A time-stepping scheme

In this section, a time-stepping scheme is presented for solving the hypersingular time-domain BIE
(13). The scheme uses the convolution quadrature of Lubich (1988a, 1988b) for evaluating the temporal
convolution and a Galerkin method for the spatial approximation of the unknown crack-opening-
displacement. The essential features of the convolution quadrature of Lubich (1988a, 1988b) are
summarized in Appendix A. To simplify the analysis, a straight crack of length 2a as shown in Fig. 2
will be assumed in what follows. In this case, the hypersingular BIE (13) takes the following form
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��a
ÿa

T G
3a3�x1, y1; t, t� � Du3�y1, t� dy1 � ÿsin

32�x1, t�, x1 2 � ÿ a, � a�, �15�

The unknown crack opening displacement Du3�y1, t� is expanded into an in®nite series of the form

Du3�y1, t� �
����������������
a2 ÿ y2

1

q X1
k�1

ck�t�Ukÿ1�y1=a�, �16�

where ck�t� are the unknown time-dependent expansion coe�cients and Ukÿ1�y1=a� are the Chebyshev
polynomials of second kind. Substituting Eq. (16) into Eq. (15), multiplying both sides by

�����
a2
p
ÿ

x 2
1Ulÿ1�x1=a� and integrating with respect to x1 from ÿa to +a, the following equation is obtained

X1
k�1

��a
ÿa

�����������������
a2 ÿ x 2

1

q
Ulÿ1�x1=a�

��a
ÿa

����������������
a2 ÿ y2

1

q
Ukÿ1�y1=a�T G

323�x1, y1; t, t� � ck�t� dy1 dx1

� ÿ
��a
ÿa

sin
32�x1, t�

�����������������
a2 ÿ x 2

1

q
Ulÿ1�x1=a� dx1, l � 1, 2, . . . ,1: �17�

The application of the convolution quadrature formula (see Appendix A)

f�t� � g�t� � h�t� �
�t
0

g�tÿ t�h�t� dt �) f�nDt� �
Xn
j�0

onÿj�Dt�h�jDt� �18�

to Eq. (17) leads to a system of linear algebraic equations for the expansion coe�cients

Xnÿ1
j�0

Anÿjc j � fn, n � 1, 2, . . . ,N, �19�

where the time variable t is devided into N equal time-steps Dt and

Anÿj �
�
Anÿj

kl

�
; c j �

�
c j
l

�
; fn � ÿf n

l

�
, �20�

with upper indices indicating the time-steps. The system matrix in Eq. (19) corresponds to the

Fig. 2. A straight crack of length 2a.
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integration weights onÿj�Dt� in the convolution quadrature (18). The system matrix and the right-hand
side of Eq. (19) are given by

An � rÿn

M

XMÿ1
m�0

ÃA�pm �eÿ2pi�nm=M, �21�

f n
l � � ÿ 1�l�1

��a
ÿa

sin
32�x1, nDt�

�����������������
a2 ÿ x 2

1

q
Ulÿ1�x1=a� dx1: �22�

In Eq. (21)

pm � d�zm �=Dt; d�zm� �
X2
j�1
�1ÿ zm � j=j; zm � re2pi�m=M: �23�

By choosing M � N and rN � ��
E
p

it can be shown (Lubich, 1988a, 1988b) that the error in An in the
present convolution quadrature method is of the order O� ��

E
p �, where E is the numerical error arised by

computing the Laplace transform ÃA�pm� of the system matrix. The system matrix in the Laplace-domain
has the following form

Âkl�p� � � ÿ 1�l
��a
ÿa

�����������������
a2 ÿ x 2

1

q
Ulÿ1�x1=a�

��a
ÿa

����������������
a2 ÿ y2

1

q
Ukÿ1�y1=a�T̂G

323�x1, y1; p� dy1 dx1, �24�

where T̂
G

323�x1, y1; p� is the Green's function in the Laplace-domain. An essential feature of the present
time-domain method is that it uses the Laplace-domain instead of the time-domain Green's functions
which are frequently applied in the usual time-domain BIE formulation. The system matrix de®ned by
Eq. (21) is symmetric, real-valued and it is just the real-part of the right-hand side of Eq. (21). The
evaluation of Eq. (21) can be performed very e�ciently by using the Fast Fourier Transform (FFT).
The Green's functions and the computation of the system matrix ÃA�p� in the Laplace transform domain
are presented in the next section.

By considering the zero initial conditions (3) the following time-stepping scheme is obtained from Eq.
(19)

cn � �A0�ÿ1
0@fn ÿ

Xnÿ1
j�1

Anÿjc j

1A, n � 1, 2, . . . ,N, �25�

where �A0�ÿ1 is the inverse matrix of A0 at the time-step n � 0: The unknown time-dependent expansion
coe�cient cn can be obtained by solving equations (25) step by step.

In passing, some comments on the present time-domain BIE method should be made. The usual time-
domain BIE method applies time-domain Green's functions and the arising temporal convolution
integrals with respect to the time variable can be evaluated analytically, when the time-domain Green's
functions have a simple mathematical structure and a polynomial temporal shape function (constant,
linear or higher order) for the unknown boundary data is used. The main di�culty of this kind of time-
domain BIE formulation is the proper choice of the time-step. A too small time-step gives rise to
unstable numerical solution, while a too large time-step leads to a numerical damping of the solution.
The present time-domain BIE formulation uses, on the other hand, a convolution quadrature based on
a multistep method, and it requires only the Laplace-domain Green's functions. A comparative study of
this method to the usual time-domain and Laplace-domain BIE formulations has been performed by
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Gaul and Schanz (1999) for viscoelastic solids. Other recent research works based on the convolution
quadrature method of Lubich (1988a, 1988b) have been carried out by Schanz and Antes (1997a, 1997b)
and Schanz (1998, 1999) for visco- and elastodynamic initial-boundary value problems in solid
mechanics. These authors have used the collocation method for the spatial discretization of the BIEs
and they have shown that the time-domain BIE method based on the convolution quadrature of Lubich
(1988a, 1988b) is more stable and less sensitive to the choice of the time-step than in the usual time-
domain BIE method. Since this method is less sensitive to the choice of the time-step, it is also
advantageous over the Laplace-domain BIE method, where the accuracy of the inverse transform may
depend strongly on the proper choice of the real part of the transform parameter. Another advantage of
the method is that it can also be applied to cases where only the Laplace-domain Green's functions are
available in simple forms, while the corresponding time-domain Green's functions are either not
available or they do not have a simple mathematical structure. Well-known examples are the dynamic
viscoelastic and the dynamic poreelastic Green's functions.

4. Evaluation of the system matrix in Laplace-domain

To compute the time-dependent system matrix An by Eq. (21), its Laplace transform ÃA�p� is required.
In this section, the generic problem in the Laplace transform domain is described, the Green's function
T̂

G

323�x1, y1; p� and the system matrix ÃA�p� are derived.
By applying the one-sided Laplace transform de®ned by

f̂�p� �
�1
0

f�t�eÿpt dt; f�t� � 1

2pi

�C�i1
Cÿi1

f̂�p�ept dp; �26�

to Eq. (5) the equation of motion can be written as

C55û3,11 � 2C45û3,12 � C44û3,22 � rp2û3, �27�

where C in Eq. (26) is a real constant and p is a transform parameter. The boundary and the continuity
conditions on the crack-faces jx1jRa and the crack-plane jx1jR1 can be stated as

ŝsc
32�x1, 0� � ÿŝin

32�x1, 0�, jx1jRa: �28�

ŝsc
32

ÿ
x1, 0

�� � ÿŝsc
32�x1, 0

ÿ�, jx1j <1, �29�

ûsc
3

ÿ
x1, 0

�� � ûsc
3 �x1, 0

ÿ�, jx1j > a: �30�

Across the crack-faces, the scattered displacement jumps, i.e.,

ûsc
3

ÿ
x1, 0

��ÿ ûsc
3 �x1, 0

ÿ� � Dû3�x1�, jx1j < a, �31�

where Dû3�x1� is the crack-opening-displacement in the Laplace transform domain.
The scattered displacement ûsc

3 satisfying Eq. (27) can be expressed as a Fourier integral of the form
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ûsc
3 �x� �

8>>><>>>:
�1
ÿ1

f1�x�exp
ÿ
ixx1 ÿ g�x2

�
dx, x2 > 0,�1

ÿ1
f2�x�exp

ÿ
ixx1 � gÿx2

�
dx, x2 < 0,

�32�

where

g2 �
g2C45ix

C44
; g �

����������������������������������������������������������ÿ
C44C55 ÿ C 2

45

�
x2 � C44rp2

q
: �33�

In Eq. (32), Re�g2�r0, and f1�x� and f2�x� are yet unknown functions.
By substituting Eq. (32) into Hooke's law (2) and by using the continuity condition (29), a relation

between f1 and f2 is obtained as

f2 � ÿf1: �34�
Eq. (32) together with Eqs. (30), (31) and (34) result in

2

�1
ÿ1

f1�x�exp�ixx1� dx �
�
0, jx1j > a,
Dû3�x1�, jx1j < a:

�35�

The inversion of Eq. (35) yields

f1�x� � 1

4p

��a
ÿa

Dû3�y1 �exp� ÿ ixy1� dy1: �36�

By substituting Eqs. (34) and (36) into Eq. (32) an expression for ûsc
3 �x� is obtained as

ûsc
3 �x� �

��a
ÿa

ŝG
323�x, y; p�Dû3�y1� dy1, �37�

where the stress Green's function ŝG
323�x, y; p� is given by

ŝG
323�x, y; p� � 1

4p
sgn�x2 ÿ y2�

�1
ÿ1

exp
�
ix�x1 ÿ y1� ÿ g2jx2 ÿ y2j

�
dx: �38�

Substitution of Eq. (37) into Hooke's law (2) yields a representation integral for the traction component
f̂ sc
3 �x�

f̂ sc
3 �x� �

��a
ÿa

T̂
G

323�x1, y1; p�Dû3�y1� dy1, �39�

where the Green's function T̂
G

323�x, y; p� is given by

T̂
G

323�x, y; p� � ÿ 1

4p

�1
ÿ1

gexp
�
ix�x1 ÿ y1� ÿ g2jx2 ÿ y2j

�
dx: �40�

Substituting Eq. (40) into Eq. (24) and using the integration formula�1
ÿ1

��������������
1ÿ Z2

p
Ukÿ1�Z�exp�iaZ� dZ � kp

a
Jk�a�exp

�
i�kÿ 1�p=2�, �41�

the system matrix Âkl�p� de®ned by Eq. (24) can be evaluated as
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Âkl�p� � ÿp
4
� ÿ 1�lkla2

�1
ÿ1

g

x2
Jk� ÿ xa�Jl�xa�exp

�
3i�k� l�p=2� dx, �42�

in which Jk��� is the Bessel function of ®rst kind and kth order.
By invoking the relation (Abramowitz and Stegun, 1972)

Jk� ÿ z� � � ÿ 1�kJk�z� �k integer�, �43�
Eq. (42) can be rewritten as

Âkl�p� �

8><>:
0, k� l odd,

ÿp
2
ik�lkla2

�1
0

g

x2
Jk�xa�Jl�xa� dx, k� l even:

�44�

Exploiting the orthogonality relation of the Bessel function (Abramowitz and Stegun, 1972)�1
0

1

z
Jk�z�Jl�z� dz � dkl

k� l
, �45�

Eq. (44) can be recast into

Âkl�p� � ÿp
2
ik�lkla2

��
g

x2
ÿ

����������������������������
C44C55 ÿ C 2

45

q
1

x

�
Jk�xa�Jl�xa� dx�

����������������������������
C44C55 ÿ C 2

45

q dkl
k� l

�
,

k� l even

�46�

By using the asymptotic behavior of the Bessel function (Abramowitz and Stegun, 1972)

Jk�z�0
������
2

pz

r
, jzj41, jzjrjkj, �47�

it can be easily shown that for x41 the integrand in Eq. (44) behaves as 1=x2, while the integrand in
Eq. (46) behaves as 1=x4: Thus, the in®nite integral of Eq. (46) converges much more fast than the
corresponding integral of Eq. (44) does. The fast convergency of the in®nite integral in Eq. (46) is very
advantageous for the numerical computation of the system matrix Âkl�p�:

The system matrix Âkl�p� is symmetric, complex-valued and has to be computed at N discrete values
pm �m � 0, 1, 2, . . . ,Nÿ 1�: Then, the system matrix An

kl �n � 0, 1, 2, . . . ,N � at N + 1 time-steps can be
evaluated by using Eq. (21). Note here that the present method requires only a numerical integration of
a single integral, while the usual Galerkin method in general involves a numerical integration of double
or triple integrals in anisotropic cases, since the Laplace-domain Green's functions do not have closed
form expressions. Here, the double integrals arised in the system matrix are evaluated analytically which
makes the numerical scheme especially e�ective and attractive.

5. Elastodynamic stress intensity factor

The elastodynamic stress intensity factor of an antiplane crack in anisotropic solids is related to the
crack-opening-displacement by
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K 2
III�t� �

������
2p
p

4

����������������������������
C44C55 ÿ C 2

45

q
lim

x 142a

1�������������
a3x1

p Du3�x1, t�, �48�

where ``2'' designates the stress intensity factor at the crack tips x1 � �a and x1 � ÿa:
Substituting Eq. (16) into Eq. (48) and using the identity (Abramowitz and Stegun, 1972)

Ukÿ1�21� � �21�kÿ1k �49�
a relation between the elastodynamic stress intensity factor and the expansion coe�cients ck�t� is
obtained as

K 2
III�t� �

������
2p
p

4

����������������������������
C44C55 ÿ C 2

45

q X1
k�1
�21�kÿ1kck�t�: �50�

Once the expansion coe�cients ck�t� have been determined numerically by using the time-stepping
scheme (25) the elastodynamic stress intensity factor can be calculated by using Eq. (50).

For convenience, a normalized elastodynamic stress intensity factor �K
2
III is introduced as

�K
2
III�t� � K 2

III�t�=K st
III, �51�

where K st
III is the static stress intensity factor of an antiplane crack of length 2a contained in an in®nite

anisotropic solid subjected to a remote static stress loading sst
32 at in®nity, i.e.,

K st
III � sst

32

������
pa
p

: �52�

6. Scattered displacement and stress ®elds

While the elastodynamic stress intensity factor is of primary interest to linear elastic fracture
mechanics, the scattered displacement and stress ®elds are of particular interest to ultrasonic
quantitative non-destructive evaluation for detecting and characterizing the location, orientation, shape
and size of pre-existing cracks, since they are directly related to the scattered displacement and stress
®elds. The scattered displacement ®eld can be computed by using the representation integral (8), which
can be approximated by the following convolution quadrature formula

usc
3 �x, nDt� �

Xn
j�0

wnÿj
�u� �x, Dt�c�jDt�, �53�

where the integration weights wn
�u� are governed by

wn
�u��x, Dt� � wn

�u�k�x, Dt� �
rÿn

M

XMÿ1
m�0

W�u��x, pm �eÿ2pi�nm=M, �54�

with pm given by Eq. (23), M � N, rN � ��
E
p

and

W�u��x, pm � �W�u�k�x, pm � �
��a
ÿa

ŝG
323�x, y;pm �

����������������
a2 ÿ y2

1

q
Ukÿ1�y1=a� dy1: �55�

Substitution of Eq. (38) into Eq. (55) and use of Eq. (41) result in
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W�u�k�x, pm � � ka

4
exp

�
i�3k� 1�p=2�sgn�x2 �

��1
ÿ1

Jk�xa�
x

exp
�
ixx1 ÿ g2jx2j

�
dx: �56�

The scattered stress ®eld can be obtained by substituting Eq. (53) into Hooke's law (2) as

ssc
3a�x, nDt� �

Xn
j�0

w
nÿj
�s�a�x, Dt�c�jDt�, �57�

where

(
wn
�s�1

wn
�s�2

)
�
�
C55 C45

C45 C44

� 8>>><>>>:
@wn
�u�

@x1

@wn
�u�

@x2

9>>>=>>>;: �58�

The integration weights given by Eqs. (54) and (58) can be calculated numerically by using FFT.

7. Numerical results and discussions

Let us consider an incident plane SH-wave (horizontally polarized shear wave) of the general form

uin
3 �x, t� � U3

�
cTtÿ q1�x1 � a� ÿ q2x2

� �H�cTtÿ q1�x1 � a� ÿ q2x2

�
, �59�

where U3 is an amplitude factor, qa is the wave propagation vector de®ned by

q1 � sin y; q2 � cos y �60�
with the incidence angle y, H[�] is the Heaviside function, and cT is the phase velocity of the SH-wave
which is governed by

c2T � �C55q1 � 2C45q1q2 � C44q2 �=r: �61�
The corresponding incident stress ®eld can be expressed as

sin
3a�x, t� � sst

3a �H
�
cTtÿ q1�x1 � a� ÿ q2x2

�
, �62�

in which the static stress components sst
3a are given by

sst
3a�x, t� �

�
sst
31

sst
32

�
� U3

�
C55 C45

C45 C44

� �
q1
q2

�
: �63�

The traction vector fn arising in the time-stepping scheme (25) can be integrated analytically by
substituting Eq. (62) into Eq. (22). One obtains for a normal incidence �y � 08)

f n
l � � ÿ 1�l�1sst

32

8><>:
pa2

2
, l � 1,

0, l6�1,
�64�

while for an oblique incidence �y 6�08�
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f n
l � � ÿ 1�l�1sst

32

8>>>><>>>>:

�
1

2
yÿ 1

4
sin�2y�

�p
y�
, l � 1,�

1

2�lÿ 1�sin�lÿ 1�yÿ 1

2�l� 1�sin�l� 1�y
�p
y�
, l 6�1,

�65�

where

Fig. 3. Normalized dynamic stress intensity factors (isotropic solids).
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y� � arccos

�
min

�
1,

cT�nDt�
sin y

ÿ 1

��
: �66�

To solve Eq. (25) numerically, the upper limits K = L of k and l arising in An
kl have to be truncated. In

general, the truncation needed depends on the wave incidence angle y and the material anisotropy. By
trial and error it is concluded that to keep the error of the numerical results less than 3% it is generally

Fig. 4. In¯uence of time-step cTDt on �K
2
III-factors (isotropic solids, y � 08 and 458).

Fig. 5. In¯uence of K � L on �K
2
III-factors (isotropic solids, y � 08 and 458).
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su�cient to take K � L � 10: A discussion on the in¯uences of the time-step Dt and the truncation
limits K = L on the numerical results is given below. The in®nite integral of Eq. (46) is evaluated
numerically by using an adaptive Romberg quadrature method in conjunction with the truncation
method. The upper limit of the integration is taken as xa � 30: The parameters used in the computation
of the system matrix An de®ned by Eq. (21) are: M = N, E � 10ÿ10 and rN � ��

E
p
:

To test the accuracy of the present numerical method, an isotropic solid containing a crack of length
2a is ®rst considered. This problem was solved analytically by Thau and Lu (1970) by Wiener±Hopf
method. For four di�erent values of the wave incidence angle y, the normalized elastodynamic stress
intensity factors are shown in Fig. 3, versus the dimensionless time cTt=a: Here, cT �

��������
m=r
p

where m is
the shear modulus and r is the mass density of the solid. Numerical calculations were carried out with K
= L = 40 and cTDt � a=20: A comparison of the present numerical results with the analytical results of
Thau and Lu (1970) shows very good agreements in all cases, which con®rms the high accuracy of the
present numerical method.

The dependence of the numerical solution on the choice of the time-step cTDt is shown in Fig. 4.
Here, K = L = 40 was used. It is shown in Fig. 4 that a smaller time-step than cTDt � a=20 does not
in¯uence the numerical results signi®cantly and the time-step cTDt � a=20 is su�cient. Thus, all results
presented below are obtained with a time-step cTDt � a=20: Fig. 4 con®rms also the conclusions of Gaul
and Schanz (1999), Schanz and Antes (1997a, 1997b) and Schanz (1998, 1999) that the time-domain BIE
method based on the convolution quadrature of Lubich (1988a, 1988b) is less sensitive to the choice of
the time-step, though the collocation method for the spatial discretization of the BIEs has been applied
by these authors. For all three values of the time-step cTDt � a=10, a/20 and a/30 used here, the present
method provides stable results, at least in the time range considered.

Fig. 5 shows the dependence of the numerical results on the truncation limits, i.e. the number of
Chebyshev polynomials K = L used in the method. Here, the time-step is selected as cTDt � a=20: It is
seen on this ®gure that it is su�cient to take K = L = 10 for normally incident waves �y � 08�, while

Fig. 6. Normalized dynamic stress intensity factors (anisotropic solids, y � 08).
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more terms are needed for obliquely incident waves �y 6�08� when the crack-faces are partially loaded.
This is the case for instance before the wave-front arrives at the right crack-tip.

Next, we consider a transversely isotropic solid with C 044 � 3:5 GPa and C 055 � 7:07 GPa, corresponding
to a Graphite±Epoxy composite. If the crack-plane, i.e. x1-axis does not coincide with one of the
principal axes of the material symmetry, i.e. x 01- or x

0
2-axis, a general anisotropy occurs (see Fig. 2). The

elastic constants C44, C45 and C55 in the x1±x2-system are related to the elastic constants C 044 and C 055 in
the x 01±x

0
2-system by

Fig. 7. Normalized dynamic stress intensity factors (anisotropic solids, y � 308).
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�
C55 C45

C45 C44

�
�

264C 055cos2a� C 044sin2a
1

2
sin�2a�ÿC 055 ÿ C 044

�
symmetric C 055sin2a� C 044cos 2a

375 �67�

where a is the inclination angle of the crack-plane, i.e. x1-axis, with respect to the x 01-axis (see Fig. 2). In
the special cases a � 08 and a � 908, the crack-plane coincides with one of the axes of material
symmetry and the transverse isotropy is recovered. Numerical calculations were carried out with K �
L � 40 and c�TDt � a=20, where c�T �

������������
C55=r
p

:
For several values of the inclination angle a corresponding to di�erent degree of material anisotropy,

Fig. 8. Normalized dynamic stress intensity factors (anisotropic solids, y � 458).
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the normalized elastodynamic stress intensity factors are shown in Figs. 6±9, versus the dimensionless
time c�Tt=a: The global behavior of the normalized dynamic stress intensity factor is similar to that for
isotropic case. Once the wave-front arrives at the crack-tips, the dynamic stress intensity factors increase
very rapidly with increasing time, after reaching a maximum they then decrease with increasing time. In
the long-time limit t41, the dynamic stress intensity factors approach their corresponding static limits
K st

III, i.e.,
�K
2
III � 1: It is interesting to mention that the normalized dynamic stress intensity factors due

to normally incident waves �y � 08� are identical for a � 08 and 908 corresponding to transversely
isotropic cases, and they are identical to that for isotropic case as given in Fig. 3. For a � 308 and 608
corresponding to a general anisotropy, the normalized dynamic stress intensity factors due to normally

Fig. 9. Normalized dynamic stress intensity factors (anisotropic solids, y � 608).
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incident waves �y � 08� are again identical and they distinguish only slightly from those for the isotropic
case or the transversely isotropic case, i.e., a � 08 or 908. For obliquely incident waves, i.e.,y 6�08, the
material anisotropy shifts the maximum normalized dynamic stress intensity factors to an eventually
larger or smaller value of the normalized time c�Tt=a, but it does not in¯uence the global behavior of the
normalized dynamic stress intensity factors. In the long-time limit t41, the material anisotropy does
not alter the normalized dynamic stress intensity factors as it should be. The peak values of the
normalized dynamic stress intensity factors depend only weekly on the material anisotropy. This implies
that the dynamic overshoot of the dynamic stress intensity factors in anisotropic solids is comparable in
amplitude to that for isotropic solids, at least for antiplane cracks considered here.

8. Conclusions

Transient elastodynamic analysis of an antiplane crack in anisotropic solids is performed by using a
time-domain traction BIE method. The temporal convolution arising in the time-domain BIE is
approximated by a convolution quadrature method developed by Lubich (1988a, 1988b), while the
spatial variation of the crack-opening-displacement is approximated by a series of Chebyshev
polynomials. By adopting a Galerkin method, a system of linear algebraic equations is obtained from
the time-domain BIE. A time-stepping scheme is presented for solving the linear algebraic equations.
Numerical examples for isotropic solids show that the present method is highly accurate and stable. The
in¯uence of the material anisotropy on the dynamic stress intensity factors is investigated numerically by
using several examples.

The present time-domain BIE method uses Laplace-domain in lieu of time-domain Green's functions
which are frequently applied in usual time-domain BIE formulations. The method can be extended to
two-dimensional inplane crack problems which will be reported in a future paper. The method is
especially suited for unbounded domains with straight cracks. For curved cracks or straight cracks in
bounded domains, the method can be modi®ed by using other more suitable Laplace-domain Green's
functions for anisotropic solids, which can be extracted from the available fundamental solutions of
Wang and Achenbach (1994). In this case, it might be advantageous using the collocation method for
spatial discretizations of the BIEs, since the Galerkin method involves double or triple integrals which
can in general not be integrated analytically. This implies that the Galerkin method for such cases
requires much more computing time for evaluating the system matrix than the collocation method does.
Applications of the convolution quadrature of Lubich (1988a, 1988b) for temporal convolution and
collocation method for spatial discretizations of the time-domain BIEs have been presented by Schanz
and Antes (1997a, 1997b), Shanz (1998, 1999), and Gaul and Schanz (1999) for viscoelastic and
elastodynamic initial-boundary value problems. One important advantage of the method over the
conventional time-domain BIE method is that the method is more stable and less sensitive to the choice
of the applied time-steps. Another advantage of the method is that it can also be applied for cases where
the Laplace-domain but not the time-domain Green's functions are available in closed or simple forms.
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Appendix A. Convolution quadrature

In this appendix, the convolution quadrature developed by Lubich (1988a, 1988b) is summarized.
Details on the method can be found in the published works of Lubich (1988a, 1988b, 1994) and Lubich
and Schneider (1992).

They key idea of the convolution quadrature is the approximation of the Riemann convolution

f�t� � g�t� � h�t� �
�t
0

g�tÿ t�h�t� dt �68�

by

f�nDt� �
Xn
j�0

onÿj�Dt�h�jDt�, n � 0, 1, . . . ,N, �69�

where the time t is divided into N equal time-steps Dt, i.e t � nDt, and onÿj is the integration weights.
To derive this quadrature formula, we rewrite Eq. (68) as

f�t� �
�t
0

"
1

2pi

�C�i1
Cÿi1

ĝ�p�e p�tÿt� dp

#
h�t� dt � 1

2pi

�C�i1
Cÿi1

ĝ�p�
�t
0

e p�tÿt�h�t� dt dp, �70�

where use is made of the inverse Laplace transform

g�tÿ t� � 1

2pi

�C�i1
Cÿi1

ĝ�p�e p�tÿt� dp �71�

with the Laplace transform ĝ�p� of the function g(t ). Introducing the function

y�t� �
�t
0

e p�tÿt�h�t� dt �72�

for the inner integral of Eq. (70) one obtains from Eq. (70)

f�t� � 1

2pi

�C�i1
Cÿi1

ĝ�p�y�t� dp: �73�

The function y(t ) satis®es the following di�erential equation of ®rst order with the initial condition y(0)
at t � 0

_y�t� � py�t� � h�t�; y�0� � 0: �74�

The di�erential equation (74) can be approximated by a linear multistep method which results in

Xk
j�0

ajynÿj � Dt
Xk
j�0

bj
�
pynÿj � hnÿj

�
, nr0 �75�

with ynÿj � y��nÿ j �Dt, hnÿj � h��nÿ j �Dt, and the starting values yÿk � � � � � yÿ1 � 0: Multiplying both
sides of Eq. (75) with zn �jzjR1�, using the formal power series representation
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y�t� � y�z� �
X1
n�0

ynz
n; h�t� � h�z� �

X1
n�0

hnz
n �76�

and summing up over n from 0 to 1 one obtains

y�t� � y�z� �
�
d�z�
Dt
ÿ p

�ÿ1
h�z�, �77�

with the quotient of the generating polynomials of the multistep method d�z�

d�z� �

Xk
j�0

ajz
j

Xk
j�0

bjz
j

: �78�

Of particular interest to the present analysis is the multistep method which is A-stable and of order 2,
i.e.

Re
�
d�z��r0, for jzjR1, �79�

1

Dt
d�eÿDt � � 1�O�Dt2�, for Dt40: �80�

Well-known examples of second-order A-stable methods are the backward di�erence formula with
d�z� �P2

j�1�1ÿ z� j=j and the trapezoidal rule with d�z� � 2�1ÿ z�=�1� z�:
Substituting Eqs. (76) and (77) into Eq. (73) and using Cauchy's integral formula for evaluating the

integral (73) one obtains

f�t� �
X1
n�0

f�nDt�zn � ĝ

�
d�z�
Dt

�X1
n�0

h�nDt�zn, �81�

where the following asymptotic behavior of ĝ�p� is assumed

jĝ�p�j40 for Re�p�r0, jpj41: �82�

Substituting the formal power series expression for ĝ�z�

ĝ

�
d�z�
Dt

�
�
X1
n�0

on�Dt�zn �83�

into Eq. (81) and using Cauchy's product formula for two series, Eq. (81) can be rewritten as

X1
n�0

f�nDt�zn �
X1
n�0

Xn
j

onÿj�Dt�h�jDt�zn: �84�

Taking the nth coe�cient of the power series (84) results in ®nally the convolution quadrature (69). The
integration weights on�Dt� arising in Eq. (83) is de®ned by
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on�Dt� � 1

2p

�
jzj�r

ĝ

�
d�z�
Dt

�
zÿnÿ1 dz, �85�

where r is the radius of a circle in the domain of analyticity of ĝ�z�: This integral can be approximated
with high accuracy by a trapezoidal rule with M equal steps 2p=M (Lubich, 1988b) as

on�Dt� � rÿn

M

XMÿ1
m�0

ĝ

�
d�zm �
Dt

�
eÿ2pi�nm=M, �86�

in which d�zm� and zm are de®ned by Eq. (23).
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